105. Isolation from the Mediterranean Stoloniferan Coral Sarcodictyon roseum of Sarcodictyin C, D, E, and F, Novel Diterpenoidic Alcohols Esterified by (E)- or (Z)-N(1)-Methylurocanic Acid. Failure of the Carbon-Skeleton Type as a Classification Criterion¹)

by Michele D'Ambrosio, Antonio Guerriero, and Francesco Pietra*

Istituto di Chimica, Università di Trento, I-38050 Povo-Trento

(7.III.88)

It is shown here that the stoloniferan coral *Sarcodictyon roseum* of east Pyrenean waters contains four novel diterpenoids, sarcodictyin C ((-)-3), D ((-)-4), E ((+)-5), and F ((+)-6), which are related to sarcodictyin A (= (-)-(4R,4aR,7R,10S,11S,12aR,1Z,5E,8Z)-7,10-epoxy-3,4,4a,7,10,11,12,12a-octahydro-7-hydroxy-6-(meth-oxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)-benzocyclodecen-11-yl (E)-N¹-methylurocanate; (-)-1), previously isolated from the same coral. Sarcodictyin C ((-)-3) and D ((-)-4) are the 3 α -hydroxy and 3 α -acetoxy derivatives of (-)-1, sarcodictyin E ((+)-5) is the (Z)-urocanate isomer of (-)-3, and sarcodictyin F ((+)-6) is the 1 α -hydroxy-2-ene isomer of (-)-3. In all cases, the nine-membered ring is locked, and the molecule stabilized, by the urocanic appendage; when this is removed in MeOH/KOH, the C(11)-O⁻ function is free to attack at C(5), and *retro*-condensations then lead to the ring-contracted butenolides 11 (from (-)-3) or 10 (from (-)-1) with extrusion of the hydroxyfuran nucleus (*Scheme 3*). Under the same conditions, with (-)-3, the C(3)-O⁻ group competitively attacks at C(5), the hydroxyfuran nucleus is expelled, and aldehyde 14 is formed. Peculiarly, in the sarcodictyins are unique in these chemical properties, not shared by the cladiellanes which have the same C-skeleton.

1. Introduction. – We have recently isolated from the Mediterranean stolonifer Sarcodictyon roseum two novel diterpenoidic alcohols esterified by $(E)-N^1$ -methylurocanic acid, sarcodictyin A ((-)-1) and B ((-)-2) [1]. We report now on the isolation from the same coral of four novel sarcodictyins. Their chemistry is not shared by the cladiellanes (see e.g. 7) [2] in spite of the same C-skeleton.

2. Results and Discussion. – The new sarcodictyins are more polar than sarcodictyin A and B [1], the polarity increasing in the order sarcodictyin E ((+)-5), D ((-)-4), F ((+)-6), and C ((-)-3).

2.1. Structures. The ¹³C-NMR spectrum of sarcodictyin C ((-)-3) bears much resemblance to that of sarcodictyin A ((-)1) [1] except for a d at 67.05 ppm (Table 1) replacing the t at 24.58 ppm (C(3)) of (-)-1. Such a deshielding is attributable to an OH group at C(3) of (-)-3, which is also indicated in the MS by the M^+ at 16 mass units higher than that of (-)-1 and by an intense $(M - 18)^+$ peak (Exper. Part). In accordance, the 2 high-field br. d for the geminally coupled protons at C(3) of (-)-1 are replaced in (-)-3 by a deshielded br. d for a proton which shows small couplings with H-C(2), H-C(4), and Me-C(1) (Table 2). The long-range ¹³C, ¹H correlations in Table 1 confirm the same C-skeleton as for (-)-1. In analogy with (-)-1, NOESY data for (-)-3 (Exper. Part) indicate that the isopropyl group is locked in the axial position. The OH group at C(3) must occupy the α position to account for 1-ppm deshielding of H-C(5) (Table 2) with respect to (-)-1. In accordance, H-C(3) has a small

¹) Presented by F.P. as a part of a lecture at the University of Hawaii at Manoa, Honolulu, December 9th, 1987.

coupling with H--C(4), which is compatible with a ca. 90° H--C(3)--C(4)-H dihedral angle. Should OH--C(3) occupy the β position, the dihedral angle would be smaller and the coupling constant larger.

The ¹H-NMR spectra of sarcodictyin D ((-)-4) are similar to those of (-)-3 except for deshielding of H-C(3) by more than 1 ppm, as expected for OAc in place of OH at C(3).

Also the ¹H-NMR spectrum of sarcodictyin E ((+)-5) resembles much that of (-)-3, differences being restricted to the urocanic portion. J(2',3') is 12.5 vs. 16.0 Hz for (-)-3, which points to the (Z) configuration for (+)-5. This is confirmed by a ca. 1-ppm deshielding of $H-C(5^{\circ})$ by the carbonyl group. This is in accordance with data for model compound (Z)-8, obtained by photoisomerization of (E)-8 (Scheme 1), similarly to the case of urocanic acid [3]. The isomer (Z)-8, shows the same pattern of chemical shifts and coupling constants as the urocanic-acid portion of (+)-5.

With sarcodictyin F ((+)-6), there are marked ¹H-NMR spectral differences with respect to (-)-3. Whereas the signals for the urocanic portion are identical, in place of the br. d's for H-C(2) and H-C(3) of (-)-3, there is with (+)-6 an AXY pattern attributable to a cis CH(2)=CH(3)-CH(4) system. Moreover, in place of the Me-C(1) br. s

965

C-Atom	$\delta(C; C_5D$ (-)-3	95N)	Correlated protons (-)-3	a)	
	134.98 (s)	·····	Me-C(1), H-C(3), H-C(4a), H-C(12a), H- $(-C(12))$		
C(2)	127.79 (d	,)	Me-C(1), H-C(3)		
C(3)	67.05(d)		H = C(4) H = C(4a)		
C(4)	52.12 (d)	Me ₂ CH		
C(4a)	34.12(d)		HC(12), H	-C(12), H-C(12a), H	1-C(3)
C(5)	145.67 (d)	$H_{endo} = C(12), H_{exo} = C(12), H = C(12a), H = C(0)$ H = C(4a), H = C(4), H = C(12a)		
C(6)	134 20 (s))	H-C(4a), H-C(5)		
C(7)	112 51 (s))	H-C(8), H-C(9), H-C(5)		
C(8)	135 10 (d)	H = C(9)	(1 0(0)	
C(9)	132.64(d)		H = C(8) Me = C(10)	H - C(11)	
C(10)	89.65 (s	<i>)</i>	H = C(9), H = C(8)	$M_{e-C(10)}$ H $\sim -C(10)$	12) H-C(11)
C(11)	81 14 (d)	H = C(12) H = C(12)	12a) Me- $C(10)$	12), 11 ((11)
C(12)	32.50(t))	$\Pi_{exo} = O(12), \Pi = O(12)$	124), 110 0(10)	
C(12)	39.81 (d)			
Me.CH	28 83 (d)	H = C(4) Me(pro-S) $H = C(3)$	
Me(nro, S)	20.65 (a 20.66 (a)	II C(4), MC(p/0-5), II C(5)	
Me(pro-B)	20.00 (q 22.33 (q)			
$M_{\alpha} = C(1)$	22.55 (q 21.60 (q)			
Me = C(1) Me = C(10)	21.00 (q 25.86 (a)			
C = C(6)	168 12 (6)	H-C(5) MeO H-	-C(0)	
M_0	51 48 (a)	$11^{\circ} C(3), M(0), 11^{\circ}$	C())	
	167.17 (g)	$H_{-}C(2')$ $H_{-}C(3')$		
C(1)	115 12 (3)	$H_{-C(3')}$ $H_{-C(5'')}$		
C(2)	113.42 (4) ')	11-0(3), 11-0(3)		
C(3')	138.10(a) 140.26(d)		MeN $H = C(5'')$ H	-031	
C(2')	140.20(a) 138.50(c)		$H_{-C(2')} = H_{-C(5'')}$	-C(3) $H_{-}C(3')$ $H_{-}C(3'')$	
C(4')	138.50(3) 124.35(d)		$M_{eN} H_{-C(2')} H$	-C(3')	
MeN	124.35(a)		$H_{-C(5'')}$	-C(3)	
	33.14 (q)		II -C(5)		
C-Atom	$\delta(C; CD_3OD)$				
	(-)-3	(-)- 4 ^b)	(+)-5	(+)-6	9
C(1)	137.09 (s)	138.47 (s)	137.13 (s)	68.55 (s)	163.01 (s)
C(2)	126.89 (d)	121.55 (d)	127.01 (<i>d</i>)	136.06 (<i>d</i>)	127.05 (d)
C(3)	68.26(d)	70.99 (d)	68.30(d)	129.19 (d)	204.02 (s)
C(4)	52.72 (d)	°)	52.82 (d)	47.82 (<i>d</i>)	59.90 (d)
C(4a)	34.78 (d)	34.55 (d)	34.81 (<i>d</i>)	34.84 (<i>d</i>)	39.18 (d)
C(5)	147.89 (d)	146.13 (d)	147.90 (<i>d</i>)	148.31 (<i>d</i>)	143.20 (<i>d</i>)
C(6)	133.29 (s)	134.37 (s)	133.32 (s)	132.18 (s)	135.22 (s)
C(7)	112.61 (s)	112.59 (s)	112.65(s)	112.69 (s)	116.74 (s)
C(8)	134.50 (<i>d</i>)	134.22 (<i>d</i>)	134.46 (<i>d</i>)	134.89 (<i>d</i>)	131.88 (d)
C(9)	134.10 (<i>d</i>)	134.15 (<i>d</i>)	134.13 (<i>d</i>)	133.89 (<i>d</i>)	136.54 (d)
C(10)	90.99 (s)	90.96 (s)	90.98 (s)	91.29 (s)	91.20 (s)
C(11)	82.04 (<i>d</i>)	82.39 (d)	81.68 (d)	81.72 (<i>d</i>)	82.38 (d)
C(12)	32.98 (t)	32.83 (t)	33.01 (<i>t</i>)	31.29 (<i>t</i>)	32.16 (<i>t</i>)
C(12a)	40.64(d)	39.99 (d)	40.76 (<i>d</i>)	42.29 (<i>d</i>)	41.92 (<i>d</i>)
Me_2CH	29.84 (<i>d</i>)	29.45 (d)	29.86 (d)	33.25 (<i>d</i>)	28.10 (d)
Me (pro-S)	20.83(q)	21.37 (q)	20.88(q)	21.82(q)	21.73 (q)
Me (pro-R)	22.50(q)	22.43 (q)	22.52(q)	22.21 (q)	22.28 (q)
Me-C(1)	21.56 (q)	21.77(q)	21.61 (q)	29.17 (q)	22.84 (q)

Table 1. ¹³C-NMR Data ($\delta(C)$) in both C_5D_5N and CD_3OD and Long-Range C,H Correlations in C_5D_5N for Sarcodictyin C ((-)-3) and ¹³C-NMR Data ($\delta(C)$) in CD_3OD for Sarcodictyin D ((-)-4), E ((+)-5), F ((+)-6), and for Enone 9

C-Atom	$\delta(C; CD_3OD)$				
	(-)-3	(-)- 4 ^b)	(+)-5	(+)-6	9
Me-C(10)	25.94(q)	25.98 (q)	25.95 (q)	25.81 (q)	24.58 (q)
CC(6)	168.69 (s)	168.53 (s)	168.62(s)	169.43 (s)	167.58 (s)
MeO	52.18(q)	52.30(q)	52.21(q)	52.12(q)	52.55(q)
C(1')	168.32 (s)	168.39 (s)	166.97 (s)	169.22 (s)	168.38 (s)
C(2')	115.91(d)	115.83 (d)	114.54(d)	116.06(d)	115.59 (d)
C(3')	138.13(d)	138.20(d)	139.16 (d)	137.97 (d)	138.45 (d)
C(2")	141.27(d)	141.30 (d)	139.43 (d)	141.27 (d)	141.36 (d)
C(4")	138.47 (s)	140.83 (s)	137.52(s)	138.51 (s)	138.45 (s)
C(5")	125.50(d)	125.57 (d)	127.78(d)	125.45 (d)	125.66 (d)
MeN	33.95 (a)	33.95(q)	34.09(q)	33.95(q)	33.95 (q)

") These protons are correlated with the C-atoms in the first columns. ") Ac 1/2.10(s), 22.11(q). ") Submer the solvent-residue signals.

Table 2. ¹H-NMR Data for Sarcodictyin C((-)-3) in CD_3OD and, within Brackets, in $C_5D_5N^a$)

H-C(2)	5.55 (br. d , $J(2,3) \approx 3$, $J(2, Me-C(1))$ small) [5.87]
H-C(3)	4.08 (br. d, $J(3,2) \approx 3$, $J(3,4) \approx J(3$, Me-C(1)) small) [4.34]
H-C(4)	$1.49 (m, J(4, Me_2CH) \approx 8, J(4,4a) = 2.0, J(4,3) \text{ small} [1.81]$
H-C(4a)	4.34 (ddd, J(4a,5) = 9.7, J(4a,12a) = 4.8, J(4a,4) = 2.0) [4.73]
H-C(5)	7.21 $(d, J(5,4a) = 9.7)$ [7.90]
H-C(8)	6.55 (d, J(8,9) = 5.9) [7.14]
H-C(9)	6.22 (d, J(9,8) = 5.9) [6.29]
H-C(11)	4.76 (br. d , $J(11,12endo) = 7.3$) [5.20]
$H_{exo}-C(12)$	1.65 (br. d, $J_{\text{gem}} = 15.0$, $J(12exo, 12a) \approx 2$) [2.00]
Hendo-C(12)	$1.48 (ddd, J_{gem} = 15.0, J(12endo, 12a) = 12.0, J(12endo, 11) = 7.3) [1.91]$
H-C(12a)	2.62 (br. d, $J(12a, 12endo) = 12.0$, $J(12a, 4a) = 4.8$, $J(12a, 12exo) \approx 2$) [2.93]
Me ₂ CH	$1.63 (m, J(Me_2CH, 4) \approx 8, J(Me_2CH, Me(pro-S)) = J(Me_2CH, Me(pro-R)) = 7.0) [1.58]$
Me(pro-S)	$1.05 (d, J(Me(pro-S), Me_2CH) = 7.0) [0.99]^{b})$
Me(pro-R)	$1.08 (d, J(Me(pro-R), Me_2CH) = 7.0) [0.98]^{b})$
Me-C(1)	1.56 (br. s, $J(Me-C(1), 2) \approx J(Me-C(1), 3)$ small) [1.61]
Me-C(10)	1.47(<i>s</i>) [1.54]
MeO	3.69 <i>(s)</i> [3.50]
HC(2')	6.46 (d, J(2', 3') = 16.0) [7.10]
H-C(3')	7.58 (d, J(3', 2') = 16.0) [8.04]
H-C(2")	7.70 (br. s, $J(2'', 5'')$ small) [7.73]
H-C(5")	7.47 (br. s, J(5",2") small) [7.40]
Me-N(1")	3.75 (s) [3.46]

^a) J values in C_5D_5N are similar to those in CD_3OD . ^b) Data can be interchanged.

of (-)-3, there is a s at higher field which indicates sp³ hybridization at C(1) of (+)-6. The ¹³C-NMR spectrum of (+)-6 shows, in place of a O-deshielded d for (-)-3, a O-deshielded s, besides an additional olefinic d. This supports the fragment Me-C(1) (OH)-CH(2)=CH(3)-CH(4). The α position for OH-C(1) is indicated by the NOESY correlation H-C(12a)/Me-C(1) and by a 0.5-ppm deshielding of H_{ende}-C(12).

2.2. Reactivity. As expected from its structure, sarcodictyin C ((-)-3) undergoes oxidation at C(3) by chromium reagents to give 9 (Scheme 2). The enone system of 9 is indicated by the ¹³C-NMR signal of C(3) at 204 ppm and by the low-field resonance of C(1) (26 ppm downfield (Table 1) as compared to (-)-3 [1]).

Treatment of (-)-3 with MeOH/KOH at r.t. leads to mainly the butenolide 11 (35%), besides the two lactones 13a (6%) and 13b (29%) and the aldehyde 14 (12%; *Scheme 3*). Similarly, (-)-1 gives 10 (50%) and 12 (33%).

The ¹H-NMR spectra of **11**, **13a**, and **13b** are similar to one another (*Table 4*). The acetylation of **13b** to **13c** is accompanied by a low-field shift of H–C(7'), which shows that the OH–C(7') group has remained intact. The pyranose ring is indicated by a typical *ddd* at 4.48–4.50 ppm for H–C(1') of **11**, **13a**, and **13b**, by the disappearance of the C(5)=C(6) bond of (-)-3, and by the appearance of a (methoxycarbonyl)methylene group with both **11** and **13**. The methylbutenolide group is supported by the NMR data (*Tables 3* and 4), and the C(3')–C(4) bonding is indicated by the 1.20 (Me–C(4))/2.95 (H–C(3')) NOESY correlation. The configurations at C(3) are supported by the coupling data in *Table 2* in combination with molecular mechanics calculations [4]. With **13a**, such calculations indicate that the less strained conformer has H_{β} –C(2)–C(3)–H and H_{α} –C(2)–C(3)–H dihedral angles of 35° and 160°. This suggest coupling constants of H–C(3) with H_{α} and H_{β} of *ca*. 7–8 Hz, which is in accordance with ¹H-NMR spectral data (*Table 4*). With **13b**, less accurate molecular mechanics calculations indicate that the less strained conformer has H_{β} –C(2)–C(3)–H dihedral angles of *ca*. 100° and 20°. This suggests coupling constants of H–C(3) with H_{α} and H_{β} of *ca*. 2 and 7 Hz, in accordance with ¹H-NMR spectra (*Table 4*) [5].

¹H-NMR monitoring of the reaction of sarcodictyin C ((-)-3) with MeOH/KOH shows that the signals for the protons around C(11) of (-)-3 are the first to change. This suggests (Scheme 4) that the transformation of (-)-3 starts with base attack at C(1'), followed by conjugate attack by C(11)-O⁻ at C(5)²) to give intermediate 15. Retro-Claisen decomposition of 15 gives butenolide 11. Compound 11 can add the solvent to give

²) According to *Dreiding* molecular models, the C(11)-O and C(5) portions of sarcodictyin C ((-)-3) are rigidly disposed, and can not approach to one another. In contrast, when the urocanic portion has been removed, the system can be easily bent and C(11)-O⁻ can approach C(5) at bonding distance.

	12					
Table 3.	¹³ C-NMR	Data in	$C_6 D_6$ for	Compounds	10–12 and	13b

pyr.

C-Atom	10	11	12	13b
$\overline{C(1)^2}$	171.48 (s)	171.53 (s)	174.51 (s)	174.60 (s)
C(2)	121.16(d)	121.18(d)	36.06(t)	36.10 (t)
C(3)	157.91(d)	157.99 (d)	80.33 (d)	80.31 (d)
C(4)	88.05 (s)	88.14 (s)	88.94 (s)	88.92 (s)
Me-C(4)	21.83(q)	22.00(q)	16.78(q)	16.80(q)
C(1')	75.13 (d)	75.12 (d)	75.28 (d)	75.10 (d)
C(3')	76.87 (d)	77.29 (d)	78.51 (d)	78.76 (d)
C(4′)	27.43 (t)	27.11(t)	26.97(t)	26.65 (t)
C(4'a)	32.14(d)	32.49 (d)	32.12(d)	32.51(d)
C(5′)	132.90 (s)	136.45 (s)	133.00 (s)	136.42 (s)

969

Table 3 (cont.)				
C-Atom	10	11	12	13b
C(6')	122.95 (d)	125.49 (d)	123.16 (d)	126.74 (d)
C(7')	24.36 (t)	66.56 (d)	24.35 (t)	66.60(d)
C(8′)	40.03(d)	47.30 (d)	40.02(d)	47.44(d)
C(8'a)	39.99 (d)	39.80 (d)	39.42 (d)	39.28 (d)
Me-C(5')	21.29(q)	21.16(q)	21.41(q)	21.26(q)
Me ₂ CH	27.33 (d)	26.87(d)	27.37(d)	26.98 (d)
Me(pro-S)	20.54(q)	21.50(q)	20.69(q)	21.68(q)
Me(pro-R)	21.83(q)	22.17(q)	21.85(q)	22.18(q)
$CH_2 - C(1')$	39.17(t)	38.92(t)	38.63 (t)	38.40(t)
COOMe ^a)	171.48(s)	171.76 (s)	172.00(s)	172.17 (s)
COOMe	51.10(q)	50.99(q)	51.12(q)	51.01(q)
OMe	-	-	56.69 (q)	56.70 (q)
COOMe OMe ^a) The C(1) and C	51.10 (q) - COOMe signals can be inter	50.99 (q) 	51.12 (q) 56.69 (q)	

|--|

	10	11
H-C(2)	5.61 (d, J(2,3) = 5.8)	5.61 (d, J(2,3) = 5.5)
H-C(3)	6.73 (d, J(3,2) = 5.8)	6.78(d, J(3,2) = 5.5)
Me-C(4)	1.16 (s)	1.20(s)
H-C(1')	3.91 (<i>ddd</i> , $J(1',8'a) = 10.0$, $J(1', H_b) = 9.5$,	4.50 (<i>ddd</i> , $J(1',8'a) = J(1', H_b) = 9.5$,
	$J(1', H_{\rm a}) = 3.1$	$J(1', H_{\rm a}) = 3.0)$
H-C(3')	$3.27 (dd, J(3', H_{ax}) = 11.5, J(3', H_{eq}) = 1.5)$	$3.32 (dd, J(3', H_{ax}) = 11.5, J(3', H_{eo}) = 1.5)$
$H_{ax} - C(4')$	$0.92 (ddd, J_{gen} = 14.0, J(H_{ax}, 3') = 11.5,$	$0.94 (ddd, J_{gern} = 14.0, J(H_{ax}, 3') = 11.5,$
	$J(H_{ax}, 4'a) = 5.0)$	$J(H_{ax}, 4'a) = 5.5)$
$H_{eq} - C(4')$	$1.79 (ddd, J_{gen} = 14.0, J(H_{eq}, 4'a) = 2.8,$	$1.77 (ddd, J_{gem} = 14.0, J(H_{eq}, 3') = 1.5,$
	$J(H_{eq}, 3') = 1.5)$	$J(H_{reg}, 4'a) = 2.5)$
H-C(4'a)	2.09 (br. s, $J(4'a, 8'a) = 4.5$, $J(4'a, H_{ax}) = 5.0$,	2.01 (br. s, $J(4'a, H_{ax}) = 5.5$, $J(4'a, 8'a) = 4.5$,
	$J(4'a, H_{eq}) = 2.8, J(4'a, Me-C(5'), small)$	$J(4'a, H_{eq}) = 2.5, J(4'a, 6') = 2.0,$
		J(4'a, Me-C(5')) = 1.0)
HC(6')	5.20 (br. s)	5.19 (br. s, $J(6',7') = 5.1$, $J(6',4'a) = 2.0$,
		J(6', Me-C(5')) = 1.0)
H-C(7')	1.76 (br. s, 2H)	3.67 (br. d , $J(7', 6') = 5.1$, $J(7', Me-C(5')) = 1.0$,
		J(7',8') small)
H-C(8')	0.80 (m, submerged)	1.19 (submerged)
HC(8'a)	1.49 (<i>ddd</i> , $J(8'a,1') = 10.0$, $J(8'a,4'a) = 4.5$,	1.66 (br. d , $J(8'a, 1') = 9.5$, $J(8'a, 4'a) = 4.5$,
	J(8'a,8) = 2.8)	J(8'a,8') = 2.4)
Me-C(5')	1.45 (br. s)	1.42 (br. s, $J(Me-C(5'), 4'a) = J(Me-C(5'), 6')$
		= J(Me-C(5'), 7') = 1.0)
Me_2CH	1.30(m)	$1.04 (dqq, J(Me_2CH, 8') = 10.0, J(Me_2CH,$
-		$Me(pro-S)) = J(Me_2CH, Me(pro-R)) = 6.5)$
Me(pro-S)	$0.67 (d, J(Me(pro-S), Me_2CH) = 6.5)$	$0.68 (d, J(Me(pro-S), Me_2CH) = 6.5)$
Me(pro-R)	$0.78 (d, J(Me(pro-R), Me_2CH) = 6.5)$	$0.81 (d, J(Me(pro-R), Me_2CH) = 6.5)$
$H_{a}CH-C(1')$	2.33 (<i>dd</i> , $J_{\text{gem}} = 14.5$, $J(H_a, 1') = 3.1$)	2.97 (<i>dd</i> , $J_{\text{sem}} = 14.5$, $J(H_a, 1') = 3.0$)
$H_{\rm b}$ CHC(1')	$2.20 (dd, J_{gem} = 14.5, J(H_b, 1') = 9.5)$	2.33 (<i>dd</i> , $J_{\text{sem}} = 14.5$, $J(H_{\text{b}}, 1') = 9.5$)
COOMe	3.40 (s)	3.40 (s)
	12	13a
H-C(2)	2.93 (<i>dd</i> , $J_{\text{gem}} = 17.8$, $J(H_{\alpha}, 3) = 6.8$, H_{α});	2.24 (<i>dd</i> , $J_{\text{gem}} = 16.5$, $J(H_{\alpha}, 3) = 7.8$, H_{α});
	2.37 (<i>dd</i> , $J_{gem} = 17.8$, $J(H_{\beta}, 3) = 1.8$, H_{β})	2.85 (<i>dd</i> , $J_{gem} = 16.5$, $J(H_{\beta}, 3) = 7.8$, H_{β})
H-C(3)	$3.74 (dd, J(3, H_{\alpha}) = 6.8, J(3, H_{\beta}) = 1.8)$	$3.16 (dd, J(3, H_{\alpha}) = J(3, H_{\beta}) = 7.8)$
Me-C(4)	1.20 (s)	1.06 (s)

970

Table 4 (cont.)	Tabl	e 4	(cont	.)
-----------------	------	-----	-------	----

	12	13a		
H-C(1')	$3.86 (ddd, J(1',8'a) = 10.0, J(1', H_b) = 9.5,$	$4.49 (ddd, J(1',8'a) = 10.5, J(1',H_b) = 8.5,$		
	$J(1', H_a) = 3.1)$	$J(1', H_a) = 3.0)$		
H-C(3')	2.92 (<i>dd</i> , $J(3', H_{ax}) = 11.7$, $J(3', H_{eg}) = 1.6$)	$3.59 (dd, J(3', H_{ax}) = 10.0, J(3', H_{co}) = 3.0)$		
$H_{ax}-C(4')$	1.60 (<i>ddd</i> , $J_{gem} = 14.0$, $J(H_{ax}, 3') = 11.7$,	· 1		
	$J(H_{ax}, 4'a) = 5.0)$	1516 (augusting and)		
$H_{eq}-C(4')$	1.77 (<i>ddd</i> , $J_{gcm} = 14.0$, $J(H_{eq}, 4'a) = 2.6$, (1.5–1.6 (superimposed)		
-	$J(H_{eq}, 3') = 1.6)$			
H-C(4'a)	2.14 (br. s, $J(4'a, H_{ax}) = 5.0$, $J(4'a, 8'a) = 4.7$,	2.19 (br. s)		
	$J(4'a, H_{eq}) = 2.6, J(4'a, Me-C(5'))$ small)			
H-C(6')	5.24 (br. s)	5.19 (br. s, $J(6',7') = 5.0$, $J(6', Me-C(5')) = 1.0$)		
H-C(7')	1.76 (br. s, 2H)	3.73 (br. d, $J(7',6') = 5.0$, $J(7', Me-C(5')) = 1.0$,		
		J(7',8') small)		
H-C(8')	0.80 (m, submerged)	1.3 (<i>m</i>)		
HC(8'a)	1.55 (dd, J(8'a, 1') = 10.0, J(8'a, 4'a) = 4.7,	1.88 (br. d , $J(8'a,1') = 10.5$)		
	J(8'a,8') = 3.0)			
Me-C(5')	1.42 (br. s)	1.43 (br. s, $J(Me-C(5'), 6')$		
		= J(Me - C(5'), 7') = 1.0)		
Me ₂ CH	1.30 (m)	1.07 (<i>m</i>)		
Me(pro-S)	$0.69 (d, J(Me(pro-S), Me_2CH) = 6.6)$	$0.76 (d, J(Me(pro-S), Me_2CH) = 6.5)$		
Me(pro-R)	$0.80 (d, J(Me(pro-R), Me_2CH) = 6.6)$	$0.84 (d, J(Me(pro-R), Me_2CH) = 6.5)$		
$H_a - CH - C(1')$	2.25 (<i>dd</i> , $J_{\text{gem}} = 14.5$, $J(H_a, 1') = 3.1$)	2.90 (<i>dd</i> , $J_{\text{nem}} = 13.5$, $J(H_a, 1') = 3.0$)		
$H_{\rm b}CHC(1')$	2.33 (dd, $J_{\text{germ}} = 14.5, J(H_{\text{b}}, 1') = 9.5$)	2.44 (<i>dd</i> , $J_{\text{germ}} = 13.5$, $J(H_{\text{b}}, 1') = 8.5$)		
COOMe	3.39 (s)	3.50 (s)		
OMe	2.86 (s)	2.82 (s)		
	13b	· · · · · · · · · · · · · · · · · · ·		
H-C(2)	2.96 (<i>dd</i> , $J_{\text{gem}} = 17.5$, $J(H_{\alpha}, 3) = 6.5$, H_{α}); 2.36	$(\overline{dd}, J_{\text{gem}} = 17.5, J(H_{\beta}, 3) = 1.8, H_{\beta})$		
H-C(3)	3.80 (<i>dd</i> , $J(3, H_\beta) = 1.8$, $J(3, H_\alpha) = 6.5$)			
Me-C(4)	1.20 (s)			
HC(1')	4.48 (<i>ddd</i> , $J(1',8'a) = J(1',H_b) = 9.5$, $J(1',H_a) =$	= 3.0)		
H-C(3')	2.95 (<i>dd</i> , $J(3', H_{ax}) = 11.0$, $J(3', H_{eq}) = 2.3$)			
$H_{ax}-C(4')$	1.68 (<i>ddd</i> , $J_{gem} = 14.0$, $J(H_{ax}, 3') = 11.0$, $J(H_{ax}, 3') = 11.0$	4'a) = 5.0)		
$H_{eq}-C(4')$	1.73 (superimposed to $H-C(8'a)$)			
HC(4'a)	2.09 (br. s, $J(4'a, H_{ax}) = 5.0$, $J(4'a, 6') = 2.0$, $J(4'a, $	(4'a, Me-C(5')) = 1.0)		
H-C(6')	5.24 (br. s, $J(6',7') = 5.0$, $J(6',4'a) = 2.0$, $J(6', Mathbf{N}) =$	Ae - C(5') = 1.0		
HC(7')	3.68 (br. d, $J(7',6') = 5.0$, $J(7', Me-C(5')) = 1.0$	3.68 (br. d , $J(7', 6') = 5.0$, $J(7', Me-C(5')) = 1.0$, $J(7', 8')$ small)		
H-C(8')	1.19 (submerged by $Me-C(4)$)			
HC(8'a)	1.73 (superimposed to $H_{eq} - C(4')$)			
Me-C(5')	1.39 (br. s, $J(Me-C(5'), 4'a) = J(Me-C(5'), 6') = J(Me-C(5'), 7') = 1.0$)			
Me ₂ CH	$1.06 (dqq, J(Me_2CH, 8') = 10.0, J(Me_2CH, Me_2CH, M$	$(pro-S)$ = $J(\text{Me}_2\text{CH}, \text{Me}(pro-R)) = 6.0)$		
	$0.69 (d. J(Me(pro-S), Me_2CH) = 6.0)$			
Me(pro-S)	$0.82 (d, J(Me(pro-R), Me_2CH) = 6.0)$			
Me(pro-S) Me(pro-R)	$0.82 (d, J(Me(pro-R), Me_2CH) = 6.0)$			
$Me(pro-S)$ $Me(pro-R)$ $H_aCH-C(1')$	$\begin{array}{l} 0.82 \ (d, \ J(\text{Me}(pro \cdot R), \ \text{Me}_2\text{C}H) = 6.0) \\ 2.86 \ (dd, \ J_{\text{gem}} = 14.5, \ J(H_a, \ 1') = 3.0) \end{array}$			
$Me(pro-S)$ $Me(pro-R)$ $H_aCHC(1')$ $H_bCHC(1')$	$0.5 (d, J(Me(pro-R), Me_2CH) = 0.0)$ $0.82 (d, J(Me(pro-R), Me_2CH) = 6.0)$ $2.86 (dd, J_{gem} = 14.5, J(H_a, 1') = 3.0)$ $2.30 (dd, J_{gem} = 14.5, J(H_b, 1') = 9.5)$			
$Me(pro-S)$ $Me(pro-R)$ $H_{a}CH-C(1')$ $H_{b}CH-C(1')$ $COOMe$	$0.52 (d, J(Me(pro-R), Me_2CH) = 6.0)$ $0.82 (d, J_{gem} = 14.5, J(H_a, 1') = 3.0)$ $2.30 (dd, J_{gem} = 14.5, J(H_b, 1') = 9.5)$ 3.40 (s)			

the lactones 13a and 13b (see above, *Scheme 3*). Similarly, (-)-1 gives 10 and 12 through the intermediate 16³).

³) Isolation of the minor stereoisomeric lactone with $\mathbf{R}'' = \mathbf{O}\mathbf{M}\mathbf{e}$ was not attempted.

When (-)-3 is allowed to react in CD_3OD/KOD , butenolide 17 is isolated, to our surprise stereospecifically deuteriated at the 4'-axial position (*Scheme 5*)⁴). Incorporation of D at the 4-axial position does not occur at the level of a type-17 compound; this is proved by the fact that compound 11 in CD_3OD/KOD in a week at r.t. does not incorporate D at C(4), whereas the protons $-C(H_2)-C(1')$ and C(2)H are exchanged.

Addition of MeOH at the butenolide double bond accounts for formation of 13a and 13b. The reaction is reversible, as shown by incorporation of D at C(2) in 11 to give 17 when CD₃OD is used.

When there is a 3α -OH group in the sarcodictyin, such as with (-)-3, aldehyde 14 is formed competitively with ring contraction (see above, *Scheme 3*). We suggest (*Scheme*

⁴) Deuteriations at CH₂--C(1') and C(2) are attributable to enolization and addition/removal of the solvent at the butenolide via deuteriated lactones of type 13. Deuteriated lactones of type 13a and 14 were present in small amounts, and the isolation was not attempted.

6) that the first intermediate of the hydrolysis (19) undergoes intramolecular conjugate attack by $C(3)-O^-$ to C(5) to give 20, followed by consecutive C(6)-C(7) retro-Claisen bond breaking to give 21 and C(10)-C(11) retro-aldol bond breaking, with expulsion of hydroxyfuran 22 to give aldehyde 14 [6].

3. Conclusions. – Formation of the butenolide moiety of 10 and 11, or of hydroxyfuran 22, from the dihydrohydroxyfuran nucleus of the sarcodictyins governs the chemistry of these terpenoids in basic media. Extrusion to form the butenolide, or expulsion of 22, are delineated in *Scheme 3* and rationalized in *Schemes 4* and 6. The primary act of the rearrangements is hydrolysis at the ester function at C(11); in fact, the sarcodictyins are stable only as long as their C(11)–OH function is esterified by the bulky methylurocanic acid.

Regrettably, no chemical transformations have been reported for either cladiellin (7) or structurally related terpenoids [2], which are the only known compounds possessing the C-skeleton of the sarcodictyins. However, the cladiellans, lacking stable removable groups, are not expected to give any of the transformations which have been described here for the sarcodictyins.

This is a case of failure of the C-skeleton as a criterion of classification of terpenoids. To be chemically meaningful, separate classes are thus required for the sarcodictyins and the cladiellanes.

We thank Mr. J. Mabit and Mr. G. Boyer for aid in the collection of S. roseum, the Laboratoire Arago for laboratory facilities, and both the M. P. I. (Progetti di Interesse Nazionale) and the C. N. R. (Roma) for financial support.

Experimental Part

1. General. TLC: Merck Kieselgel 60 PF₂₅₄ plates. HPLC: Merck-LiChrosorb-CN (7 µm) 25 × 1 cm column, hexane/EtOH/(*i*-Pr)NH₂ 80:18:2, 5 ml/min. All evaporations were carried out at reduced pressure at r.t. Reaction yields are calculated on reacted materials. Polarimetric data: JASCO-DIP-181 digital polarimeter. UV and IR spectra: Perkin-Elmer Lambda-3 (λ_{max} in nm, ε in dm³ · mol⁻¹ · cm⁻¹) and Pye-Unicam SP3-100 (\tilde{v}_{max} in cm⁻¹) spectrophotometers, resp. ¹H-NMR and ¹³C-NMR spectra: Varian XL300 (300 or 75.43 MHz, resp.); δ (ppm) relative to internal Me₄Si (= 0 ppm) and J in Hz, the notation 'small' indicates J < 0.5 Hz; J's are derived from homonuclear decoupling; ¹³C multiplicities: APT [7] or DEPT [8] techniques; all assignments are supported by ¹³C, ¹H-NMR shift correlation experiments (HETCOR) [9] as in [1]. Low-resolution MS: home-built quadrupole mass spectrometer based on the ELFS-4-162-8 Extranuclear quadrupole [10]. High-resolution MS and linked scans [11]: VG-ZAB2F ((-)-3) or VG 70-70 ((+)-6) spectrometers. Molecular-mechanics calculations were carried out with the MMPMI program by Serena Software, Blomington, Indiana.

2. Isolations. Continuing the HPLC elution of extracts of S. roseum on the CN column as before [1], sarcodictyin E ((+)-5; 0.058 g, t_R 13.8), D ((-)-4; 0.017 g, t_R 16.2), F ((+)-6; 0.038 g, t_R 18.8), and C ((-)-3; 0.27 g, t_R 21.3 min) were obtained.

3. Sarcodictyin $C = (-) - (3 \mathbb{R}^{*}, 4 \mathbb{S}^{*}, 4a \mathbb{S}^{*}, 7\mathbb{S}^{*}, 10 \mathbb{R}^{*}, 11 \mathbb{R}^{*}, 12a \mathbb{S}^{*}, 12, 5 \mathbb{E}, 8\mathbb{Z}^{*}, 7, 10 - Epoxy-3, 4, 4a, 7, 10, 11, 12, 12a - octahydro - 3, 7 - dihydroxy - 6 - (methoxycarbonyl) - 1, 10 - dimethyl - 4 - (1 - methylethyl) benzocyclodecen - 11 - yl (E) -3 - (1 - Methyl - 1 H - imidazol - 4 - yl) acrylate⁶); (-) -3). Colourless microcrystalline powder. M.p. 225-227° (from (CH₃)₂O). [<math>\alpha$]²⁰ = -16.5 (589), -20.0 (577), -22.4 (546), -57.6 (435) (c = 0.085, EtOH). UV (EtOH): 290 (15 300), 202 (13800). IR (nujol): 3400s (OH), 1700s (C=O), 1690s (C=O), 1630m, 1170s, 1150s, 1050s. NOESY (C₅D₅N): 1.81 (H-C(4))/7.90 (H-C(5)); 6.29 (H-C(9))/1.54 (Me-C(10)); 5.20 (H-C(11))/1.54 (Me-C(10)); 2.93 (H-C(12a))/1.58 (Me₂CH); 7.40 (H-C(5''))/3.46 (MeN). MS: 512 (0.4, M^+), 494 (2, M^+ - 18), 451 (2), 342 (2), 310 (1), 195 (3), 179 (3), 166 (4), 153 (20), 135 (100), 107 (7), 65 (10). HR-MS: found 494.2415 ± 0.05 (C₂₈H₃₄N₂O₆, calc. 494.2417). Linked scans (B/E [11]): working on M^+ - 18, peaks at 476 (494 - H₂O), 462 (494 - MeOH), 451 (494 - C₃H₇), 341 (494 - C₇H₉N₂O₂); working on m/z 451, peaks at 433 (451 - H₂O), 419 (451 - MeOH); working on m/z 342, peaks at m/z 324 (342 - H₂O), 310 (342 - MeOH).

4. Oxidation of (-)-3. A soln. of (-)-3 (0.012 g, 0.023 mmol) and 1.5 mol-equiv. of pyridinium dichromate in 1 ml of dry DMF was stirred overnight at r.t., then eluted over silica gel and evaporated. The residue was subjected to HPLC obtaining 9 (t_R 17.2 min; 0.0082 g, 70%). ¹H-NMR (CD₃OD): 5.81 (*m*, J(2,12a) = 2.8, J(2, Me-C(1)) = 1.2, J(2,4) = 0.5, H-C(2)); 1.94 (br. *dd*, J(4, Me₂CH) = 10.5, J(4,4a) = 2.5, J(4,2) = 0.5, H-C(4)); 4.58 (*ddd*, J(4a,5) = 9.7, J(4a,12a) = 4.6, J(4a,4) = 2.5, H-C(4a)); 6.45 (*d*, J(5,4a) = 9.7, H-C(5)); 6.49 (*d*, J(8,9) = 6.0, H-C(8)); 6.41 (*d*, J(9,8) = 6.0, H-C(9)); 4.79 (br. *d*, J(11,12*endo*) = 7.0, J(11,12*exo*) small, H-C(11)); 1.84 (br. *d*, J_{gem} = 15.0, J(12*exo*,12a) = 2.0, J(12*exo*,11) small, H_{exo}-C(12)); 1.52 (*ddd*, J_{gem} = 15.0, J(12*endo*,11) = 7.0, H_{endo}-C(12)); 3.31 (submerged by the solvent signal, H-C(12a)); 2.05 (*dqq*, J(Me₂CH, 4) = 10.5, J(Me₂CH, Me(*pro-S*)) = J(Me₂CH, Me(*pro-R*)) = 6.5, Me₂CH); 1.15, 0.93 (2 *d*, J = 6.5, Me(*pro-S*)); 1.52 (*d*, J(3',2') = 15.5, H-C(2')); 7.62 (*d*, J(3',2') = 15.5, H-C(3')); 7.72 (br. *s*, J(2",5") small, H-C(2")); 7.49 (br. *s*, J(5",2") small, H-C(5")); 3.76 (*s*, MeN).

5. Treatment of (-)-3 with Methanolic Base. a) With MeOH/KOH. A soln. of (-)-3 (0.02 g, 0.04 mmol) in 0.5 ml of 0.1 m KOH/MeOH was allowed to stand at r.t. for 4 days and then subjected to TLC with Et₂O, obtaining 14 ($R_{\rm f}$ 0.91; 0.0013 g, 12%), 11 ($R_{\rm f}$ 0.59; 0.0053 g, 35%), 13b ($R_{\rm f}$ 0.46; 0.0048 g, 29%), 13a ($R_{\rm f}$ 0.31; 0.001 g, 6%), and (E)-N¹-methylurocanic acid ($R_{\rm f}$ 0.006; 0.0058 g, 95%).

b) With CD₃OD/KOD. A soln. of (-)-3 (0.01 g, 0.02 mmol) in 0.4 ml of 0.1 M MeOD/KOD was handled as in a) to give 17 (0.0031 g, 41 %) and 18 (0.0022 g, 26%).

 $(4 \mathbb{R}^*, 1' \mathbb{R}^*, 3' \mathbb{R}^*, 4'a \mathbb{S}^*, 7' \mathbb{R}^*, 8' \mathbb{S}^*, 8' a \mathbb{R}^*, 5' \mathbb{Z}) - 4 - \{3', 4', 4'a, 7', 8', 8'a-Hexahydro-7'-hydroxy-1'-f (methoxycarbonyl)methyl]-5'-methyl-8'-(1-methylethyl)-1'H-2'-benzopyran-3'-yl]-4-methyl-2-buten-4-olide (11). IR (film): 3500s (OH); 1740s, 1750s, 1780s (C=O); 1440s, 1110s. NOESY (key data only; C₆D₆): 4.50 (H-C(1'))/3.32 (H-C(3')); 1.77 (H_{eq}-C(4'))/1.42 (Me-C(5')); 2.01 (H-C(4'a))/0.68 (Me(pro-S)); 3.67 (H-C(7'))/0.81 (Me(pro-R)); 1.19 (H-C(8'))/2.97 (H_aC-C(1')); 1.66 (H-C(8'a))/0.68 (Me(pro-S)). MS: 360 (2, <math>M^+ - 18$), 328 (1), 317 (2), 285 (5), 243 (13), 219 (20), 189 (61), 187 (22), 161 (37), 159 (33), 147 (56), 145 (54), 119 (81), 91 (100).

⁶) Numbering according to Footnote 5 in [1].

 $(3 \mathbb{R}^*, 4\mathbb{S}^*, 1' \mathbb{R}^*, 3' \mathbb{R}^*, 4' a \mathbb{S}^*, 7' \mathbb{R}^*, 8' a \mathbb{R}^*, 5' \mathbb{Z})$ -4- $\{3', 4', a, 7', 8', 8' a - Hexahydro-7' - hydroxy-1' - [(methoxy-carbonyl)methyl]-5'-methyl-8'-(1-methylethyl)-1' H-2'-benzopyran-3'-yl]-3-methoxy-4-methylbutan-4-olide (13a). Differential NOE effects (<math>C_6D_6$, irradiated proton(s) \rightarrow NOE effect (%) on the observed proton(s)): 2.24 \rightarrow 2.85 (9%), 2.82 (1%); 2.85 \rightarrow 2.24 (3%); 1.06 \rightarrow 3.16 (5%), 3.59 (2%); 3.16 \rightarrow 2.82 (1%).

 $(3 \mathbb{R}^{*}, 4 \mathbb{R}^{*}, l' \mathbb{S}^{*}, 3' \mathbb{S}^{*}, 4' a \mathbb{R}^{*}, 7' \mathbb{S}^{*}, 8' a \mathbb{R}^{*}, 3' \mathbb{S}^{*}, 4' a \mathbb{R}^{*}, 7' \mathbb{S}^{*}, 8' a \mathbb{R}^{*}, 5' \mathbb{Z}) - 4 - \{3', 4', 4' a, 7', 8', 8' a - Hexahydro-7'-hydroxy-1'-[(methoxy-carbonyl) methyl] - 5' - methyl-8' - (1 - methylethyl) - 1' H - 2' - benzopyran - 3' - yl] - 3 - methoxy - 4 - methylbutan - 4 - olide (13b). IR (film): 3500s (OH); 1740s, 1780s (C=O); 1100s. NOESY (key data only, C_6D_6): 2.96 (H_2-C(2))/3.80 (H-C(3)); 3.80 (H-C(3))/1.20 (Me-C(4)); 4.48 (H-C(1'))/2.95 (H-C(3')); 2.95 (H-C(3'))/1.20 (Me-C(4)); 2.09 (H-C(4'a))/0.69 (Me(pro-S)); 2.09 (H-C(4'a))/1.06 (Me_2CH); 3.68 (H-C(7'))/0.82 (Me(pro-R)); 1.19 (H-C(8'))/2.86 (H_aC-C(1')). Differential NOE effects (C_6D_6, irradiated proton(s) <math>\rightarrow$ NOE (%) effect on the observed proton(s)): 1.20 \rightarrow 3.80 (2%), 2.95 (9%), 2.88 (2%), 2.36 (3%). MS: 392 (2, $M^+ - 18$), 333 (7), 285 (3), 219 (15), 189 (31), 159 (31), 143 (19), 119 (73), 43 (100).

Methyl (1R*,2S*,5R*,7S*,8S*)-2-(Formylmethyl)-3-methyl-8-(1-methylethyl)-6-oxabicyclo[3.2.1]oct-3en-7-acetate (14). IR (film): 2710w (CHO), 1730s (C=O). ¹³C-NMR (C₆D₆): 35.48 (d, C(1)); 44.31 (d, C(2)); 138.81 (s, C(3)); 123.98 (d, C(4)); 73.77 (d, C(5)); 75.01 (d, C(7)); 51.01 (d, C(8)); 43.60 (t, CH₂-C(2)); 199.85 (d, CHO); 21.84 (q. Me-C(3)); 40.62 (t, $CH_2-C(7)$); 171.52 (s, COOMe); 50.96 (q, COOMe); 25.31 (d, Me_2CH); 20.23, 22.24 (2 q, Me(pro-S), Me(pro-R)). ¹H-NMR (C₆D₆): 2.11 (br. dd, J(1,8) = 4.0, J(1,2) = 3.0, J(1,5) small, H-C(1)); 2.97 (m, $J(2, CH_2-C(2)) = 9.3$ and 4.7, J(2,4) = 2.2, J(2, Me-C(3)) = 1.0, H-C(2)); 5.43 (m, Me-C(3)) = 1.0, H-C(2); 5.43 (m, Me-C(3)) = 1.0, H-C(2)); 5.43 (m, Me-C(3)) = 1.0, H-C(3); 5.44 (m, Me-C(3)) = 1.0, H-C(3); 5.45 (m, Me-C(3)) = 1.0, H-C(3)) = 1.0, H-C(3); 5.45 (m, Me-C(3)) = 1.0, H-C(3)) = 1.0, H-C(3); 5.45 (m, Me-C(3)) = 1.0, H-C(3)) = 1.0, H-C(3); 5.45 (m, Me-C(3)) = 1.0, H-C(3)) = 1.0, H-C(3); 5.45 (m, Me-C(3)) = 1.0, H-C(3)) = 1.0, H-C(3); 5.45 (m, Me-C(3)) = 1.0, H-C(3)) = 1.0, H-C(3); 5.45 (m, H-C(3)) = 1.0, H-C(3); 5.45 (m, H-C(3)) = 1. J(4,5) = 5.8, J(4,2) = 2.2, J(4, Me-C(3)) = 1.2, H-C(4); 4.06 (br. dd, J(5,4) = 5.8, J(5,8) = 3.0, J(5,1) small, H-C(5); 4.38 (dd, J(7, $CH_2-C(7)$) = 9.5 and 5.0, H-C(7); 1.56 (m, superimposed to Me_2CH , H-C(8)); 2.45, 2.10 (br. dd, $J_{\text{zem}} = 18.5$, $J(\text{CH}_2-\text{C}(2), 2) = 9.3$ and 4.7, $J(\text{CH}_2-\text{C}(2), \text{CHO}) = 0.8$ and small, $\text{CH}_2-\text{C}(2)$; 9.48 (br. s, $J(CHO, CH_2-C(2)) = 0.8$ and small, CHO); 1.26 (br. s, J(Me-C(3), 4) = 1.2, J(Me-C(3), 2) = 1.0, Me-C(3)); 2.35, 2.61 (dd, $J_{gem} = 16.0$, $J(CH_2-C(7), 7) = 9.5$ and 5.0, $CH_2-C(7)$); 3.24 (s, MeO); 1.56 (m, superimposed to $H-C(8), Me_2CH); 0.99 (d, J(Me(pro-S), Me_2CH) = 6.0, Me(pro-S)); 0.76 (d, J(Me(pro-R), Me_2CH) = 6.0, Me(pro-R)); 0.76 (d, J(Me(pro-R), Me_2CH) = 6.0, Me(pro-R)); 0.76 (d, J(Me(pro-R), Me_2CH) = 6.0, Me(pro-R)); 0.76 (d, J(Me(pro-$ Me(pro-R)). Differential NOE effects (C₆D₆, irradiated proton(s) \rightarrow NOE effect (%) on the observed proton(s)): $2.10 \text{ and } 2.11 \rightarrow 2.97 (8\%), 4.38 (4\%); 4.38 \rightarrow 2.45 (7\%), 2.61 (3\%), 2.11 (2\%). \text{ NOESY } (C_6D_6): 2.11 (H-C(1))/0.99$ (Me(pro-S)); 4.06 (H-C(5))/0.76 (Me(pro-R)). MS: 280 (1, M⁺), 265 (1), 262 (3), 249 (2), 237 (3), 219 (4), 205 (3), 249 (2), 237 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (3), 219 (4), 205 (4),193 (32), 178 (16), 134 (100), 119 (47), 105 (34), 93 (68).

 $4 - \{3', 4', 4'a, 7', 8', 8'a - Hexahydro - 7' - (D)hydroxy - 1' - [((D_3)methoxycarbonyl)(D_2)methyl] - 5' - methyl - 8' - (1-methylethyl) - (4'\beta - D) - 1'H - 2' - benzopyran - 3' - yl\} - 4-methyl - 2-(2-D)buten - 4-olide (17). ¹H - NMR (C₆D₆): the only signals that differ from those for 11 are 6.78 (s, H-C(3)); 4.50 (d, J(1', 8'a) = 9.5, H-C(1')); 3.31 (d, J(3', H-C(4')) = 1.5, H-C(3')); 1.76 (br. s, J(H-C(4'), 4'a) = 2.5, J(H-C(4'), 3') = 1.5, H-C(4')), while signals for protons at C-C(1'), C(2), and COOC are absent.$

6. Sarcodictyin $D (= (-)-(3 \mathbb{R}^{*}, 4 \mathbb{S}^{*}, 4 \mathbb{S}^{*}, 10 \mathbb{R}^{*}, 11 \mathbb{R}^{*}, 12a \mathbb{S}^{*}, 12, 5 \mathbb{E}, 8 \mathbb{Z})$ -3-Acetoxy-7,10-epoxy-3,4,4a, 7,10,11,12,12a-octahydro-7-hydroxy-6-(methoxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (\mathbb{E})-3-(1-methyl-1 H-imidazol-4-yl)acrylate⁶); (-)-4). Colourless microcrystalline powder. M.p. 130-132° (from MeOH). [α]²⁰₅₈₉ = -27.2 (c = 0.25, MeOH). ¹H-NMR (CD₃OD): 5.48 (br. s, H-C(2)); 5.25 (br. s, H-C(3)); 1.60 (superimposed, H-C(4)); 4.42 (ddd, H-C(4a)); 7.35 (d, H-C(5)); 6.56 (d, H-C(8)); 6.24 (d, H-C(9)); 4.74 (d, H-C(11)); 1.71 (br. d, H_{exo}-C(12)); 1.46 (superimposed, H_{endo}-C(12)); 2.74 (br. d, H-C(12a)); 1.60 (superimposed, Me₂CH); 1.12, 1.08 (2 d, Me(pro-S), Me(pro-R)); 1.62 (br. s, Me-C(1)); 1.46 (s, Me-C(10)); 3.72 (s, MeO); 6.46 (d, H-C(2')); 7.58 (d, H-C(3')); 7.71 (br. s, H-C(2'')); 7.47 (br. s, H-C(5'')); 3.75 (s, MeN); coupling constants are practically identical to those for (-)-3.

7. Sarcodictyin $E = (+)-(3R^*, 4S^*, 4aS^*, 7S^*, 10R^*, 11R^*, 12aS^*, 12, 5E, 8Z)-7, 10-Epoxy-3, 4, 4a, 7, 10, 11, 12, 12a-octahydro-3, 7-dihydroxy-6-(methoxycarbonyl)-1, 10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (Z)-3-(1-methyl-1H-imidazol-4-yl)acrylate⁶); (+)-5). Colourless microcrystalline powder. M.p. 212-214° (from MeOH). <math>[\alpha]_{589}^{20} = +15.6 (c = 0.42, MeOH). UV (MeOH): 272 (14500), 202 (17500). ¹H-NMR (CD₃OD); 5.57 (br. s, H-C(2)); 4.08 (br. s, H-C(3)); 1.50 (superimposed, H-C(4)); 4.38 (ddd, H-C(4a)); 7.21 (d, H-C(5)); 6.55 (d, H-C(8)); 6.15 (d, H-C(9)); 4.75 (d, H-C(11)); 1.64 (superimposed, <math>H_{exo}$ -C(12)); 1.50 (superimposed, H_{endo} -C(12)); 2.64 (br. d, H-C(12a)); 1.64 (superimposed, Me_2CH); 1.10, 1.08 (2 d, Me(pro-S), Me(pro-R)); 1.56 (br. s, Me-C(1)); 1.45 (s, Me-C(10)); 3.69 (s, MeO); 5.83 (d, J(2',3') = 12.5, H-C(2')); 6.94 (d, J(3',2') = 12.5, H-C(3')); 6.94 (d, J(3',3')); 6.

H-C(3')); 7.65 (br. s, H-C(2")); 8.42 (br. s, H-C(5")); 3.77 (s, MeN); coupling constants not reported are practically identical to those for (-)-3.

8. UV Irradiation of Methyl (E)-3-(1-Methyl-1H-imidazol-4-yl)acrylate ((E)-8). A 0.04 \times soln. of (E)-8 in CD₃OD was irradiated with a 4-W low-pressure Hg lamp in a 5 mm Pyrex NMR tube at r.t. during 13 h. The ¹H-NMR spectrum revealed the presence of (E)- and (Z)-8 in a 1:1 ratio, with signals identical to the urocanic portion of (-)-3 and (+)-5, respectively.

12,12a-octahydro-1,7-dihydroxy-6-(methoxycarbonyl)-1,10-dimethyl-4-(1-methylethyl)benzocyclodecen-11-yl (E)-3-(1-Methyl-1H-imidazol-4-yl)acrylate; (+)-6). Colourless microcrystalline powder. M.p. 228-229° (from MeOH). $\left[\alpha\right]_{589}^{2}$ = + 2.7 (c = 0.15, MeOH). ¹H-NMR (C₅D₅N): 5.98 (br. d, J(2,3) = 10.0, J(2,4) small, H-C(2)); $5.76 (ddd, J(3,2) = 10.0, J(3,4) = 5.0, J(3,4a) = 1.0, H-C(3); 1.78 (br. dd, J(4, Me_2CH) = 8.5, J(4,3) = 5.0, J(4,2) = 1.0, J$ small, H-C(4); 4.81 (*ddd*, J(4a,5) = 10.0, J(4a,12a) = 3.5, J(4a,3) = 1.0, H-C(4a); 7.24 (*d*, J(5,4a) = 10.0, H-C(5); 7.12 (d, J(8,9) = 6.0, H-C(8)); 6.26 (d, J(9,8) = 6.0, H-C(9)); 5.28 (d, J(11,12endo) = 7.0, H-C(11)); 2.08 (br. d, $J_{gem} = 15.0$, J(12exo, 12a) small, $H_{exo} - C(12)$); 2.42 (ddd, $J_{gem} = 15.0$, J(12endo, 12a) = 12.0, J(12endo,11) = 7.0, $H_{endo} - C(12)$; 2.58 (br. d, J(12a,12endo) = 12.0, J(12a,4a) = 3.5, J(12a,12exo) small, H-C(12a); 1.62 (superimposed, Me_2CH); 0.93, 0.91 (2 d, J = 6.0, Me(pro-S), Me(pro-R)); 1.47 (s, Me-C(1)); 1.58 (s, Me-C(10)); 3.42 (s, MeO); 7.11 (d, J(2',3') = 15.0, H-C(2')); 8.02 (d, J(3',2') = 15.0, H-C(3')); 7.68 (br. s, 1.58 $J(2^{"},5^{"})$ small, $H-C(2^{"})$; 7.34 (br. s, $J(5^{"},2^{"})$ small, $H-C(5^{"})$); 3.38 (s, MeN). NOESY (key data only; C₅D₅N): 5.98 (H-C(2))/1.47 (Me-C(1)); 1.78 (H-C(4))/4.81 (H-C(4a)); 7.24 (H-C(5))/1.78 (H-C(4)); 6.26 (H-C(9))/1.78 (H-C(9))/1.781.58 (Me-C(10)); 5.28 (H-C(11))/4.81 (H-C(4a)); 5.28 (H-C(11))/1.58 (Me-C(10)); 5.28 (H-C(11))/2.58 $(H-C(12a)); 2.08 (H_{exo}-C(12))/1.47 (Me-C(1)); 2.58 (H-C(12a))/1.47 (Me-C(1)); 7.34 (H-C(5''))/3.38 (MeN).$ MS: 512 (1, M⁺⁻), 494 (0.6, M⁺⁻ - 18), 409 (1), 367 (1), 342 (1), 310 (1), 298 (2), 267 (1), 241 (1), 195 (3), 179 (2), 166 (4), 153 (20), 135 (100). HR-MS: 512.25384 ± 0.002 (C₂₈H₃₆N₂O₇, calc. 512.25225).

10. Treatment of (-)-1 with MeOH/KOH. A soln. of (-)-1 (0.01 g, 0.02 mmol) in 0.5 ml of 0.1M KOH/MeOH was allowed to stand at r.t. for 4 days and then subjected to TLC with petroleum ether/Et₂O 1:1 to give 10 (R_f 0.72; 0.0036 g, 50%), 12 (R_f 0.66, 0.0028 g, 33%) (NMR data in *Tables 3* and 4), and (E)- N^1 -methylurocanic acid (R_f 0.006; 0.0029 g, 95%).

REFERENCES

- [1] M. D'Ambrosio, A. Guerriero, F. Pietra, Helv. Chim. Acta 1987, 70, 2019.
- [2] R. Kazlauskas, P. T. Murphy, R. J. Wells, P. Schönholzer, *Tetrahedron Lett.* 1977, 4643; Y. Kashman, *ibid.* 1980, 21, 879; J. E. Hochlowski, *ibid.* 1980, 21, 4055; M. Ochi, K. Futatsugi, H. Kotsuki, M. Ishii, K. Shibata, *Chem. Lett.* 1987, 2207.
- [3] F.D. Lewis, D.K. Howard, J.D. Oxman, A.L. Upthagrove, S.L. Quillen, J. Am. Chem. Soc. 1986, 108, 5964.
- [4] U. Burkert, N. L. Allinger, 'Molecular Mechanics', ACS Monograph 177, ACS, Washington, D.C., 1982.
- [5] B. Sullivan, D. J. Faulkner, J. Org. Chem. 1984, 49, 3204.
- [6] J. Cardellach, C. Estopa, J. Font, M. Moreno-Mañas, R. M. Ortuño, F. Sanchez-Ferrando, S. Valle, L. Vilamajo, *Tetrahedron* 1982, 38, 2377.
- [7] C. Le Cocq, J.Y. Lallemand, J. Chem. Soc., Chem. Commun. 1981, 150; S.L. Patt, J.N. Sholery, J. Magn. Reson. 1982, 46, 535.
- [8] D. M. Doddrell, D. T. Pegg, M. R. Bendall, J. Magn. Reson. 1982, 48, 323.
- [9] A. Bax, J. Magn. Reson. 1983, 53, 517.
- [10] A. Slomp, G. Chiasera, C. Mezzena, F. Pietra, Rev. Sci. Instrum. 1986, 57, 2786.
- [11] S. Daolio, P. Traldi, R. Tonani, Ann. Chim. (Rome) 1983, 73, 591.